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Surveillance  is a critical  component  of disease  control  programmes  but  is often  poorly
resourced,  particularly  in  developing  countries  lacking  good  infrastructure  and especially
for zoonoses  which  require  combined  veterinary  and  medical  capacity  and  collaboration.
Here  we  examine  how  successful  control,  and  ultimately  disease  elimination,  depends
on effective  surveillance.  We  estimated  that  detection  probabilities  of  <0.1  are  broadly
typical  of  rabies  surveillance  in  endemic  countries  and  areas  without  a history  of  rabies.
Using  outbreak  simulation  techniques  we  investigated  how  the  probability  of  detection
affects  outbreak  spread,  and  outcomes  of response  strategies  such  as  time  to  control  an
outbreak,  probability  of  elimination,  and  the  certainty  of declaring  freedom  from  dis-
ease. Assuming  realistically  poor  surveillance  (probability  of detection  <0.1),  we  show
that proactive  mass  dog  vaccination  is  much  more  effective  at controlling  rabies  and
no  more  costly  than  campaigns  that  vaccinate  in response  to case  detection.  Control
through  proactive  vaccination  followed  by 2 years  of  continuous  monitoring  and  vacci-
nation  should  be  sufficient  to  guarantee  elimination  from  an  isolated  area  not  subject  to
repeat  introductions.  We  recommend  that  rabies  control  programmes  ought  to  be able  to
maintain  surveillance  levels  that  detect  at least  5%  (and  ideally  10%)  of  all cases  to  improve

their prospects  of  eliminating  rabies,  and  this  can be achieved  through  greater  intersec-
toral  collaboration.  Our  approach  illustrates  how  surveillance  is critical  for the control
and elimination  of  diseases  such  as canine  rabies  and  can provide  minimum  surveillance
requirements  and  technical  guidance  for  elimination  programmes  under  a broad-range  of
circumstances.
. Introduction
Surveillance is a critical element in the control and
limination of infectious diseases [1]. Effective surveillance

∗ Corresponding author. Tel.: +44 0141 330 6638;
ax: +44 0141 330 5971.

E-mail address: sunnytownsend@gmail.com (S.E. Townsend).

147-9571/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.cimid.2012.10.008
© 2012 Elsevier Ltd. All rights reserved.

systems allow early detection and reporting of cases, vital
for initiating timely responses and enabling informed deci-
sions about when and where to intensify control efforts.
Once interventions are implemented, surveillance is also
essential to generate data on the progress and cost-

effectiveness of such programmes, which are essential for
their sustainable implementation. In practice the quality
of surveillance and therefore the probability of disease
detection can vary considerably, with consequences for
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disease control such as outbreak containment or discontin-
uation of control measures once freedom from disease has
been achieved. Weak surveillance may  therefore result in
delayed control interventions and complacency [2] and can
jeopardize chances of disease elimination [3]. As control
efforts progress towards elimination, surveillance becomes
even more critical in order to detect new incursions.
“Unless an effective reporting and surveillance programme
is developed, there is no prospect whatsoever for a success-
ful eradication programme” D.A. Henderson [4].

Rabies is one of the most feared zoonoses, nearly
always resulting in fatal acute encephalitis [5]. Although
rabies is maintained and transmitted by a wide range of
species and may  never be eradicated from all species, it is
feasible to eliminate canine rabies [6], which is respon-
sible for the vast majority of human cases worldwide
and is of the greatest public health concern [7,8]. Canine
rabies is not only a major burden in endemic countries
where thousands of human deaths are estimated to occur
annually [7], but also in previously rabies-free areas where
risks of re-emergence have been increasing over the last
decade [e.g. 9, 10, 11]. A ‘One Health’ approach is the most
effective way of protecting humans from canine rabies,
as infection is maintained in domestic dog populations.
A number of countries have achieved considerable suc-
cesses in canine rabies elimination through mass dog
vaccination [12–14]. The feasibility and cost-effectiveness
of this approach has been strongly advocated in recent
years [15], with major international public and animal
health organisations declaring global canine rabies elimi-
nation as a realistic goal (e.g. WHO  http://www.who.int/
rabies/bmgf who project/en/index.html; OIE http://www.
oie.int/en/for-the-media/editorials/detail/article/oies-
commitment-to-fight-rabies-worldwide). The degree of
success of national and global canine rabies elimination
efforts is however heavily reliant on effective epidemio-
logical surveillance, which should ensure that intervention
impacts can be monitored through time and outbreak
responses initiated where necessary. Indeed, response
times to incursions are dependent on the speed of first
detection (Table 1), hence surveillance plays a major role
in triggering an early response.

For vaccine preventable diseases, surveillance typically
improves once a control programme gets underway,
as observed during eradication efforts for polio, and
more generally during the expanded programme on
immunization (EPI) for the control of measles and other
childhood infections [1,16]. However, in developing
countries routine surveillance may  initially be vestigial
to non-existent with limited reporting accounting for
substantial underestimation of cases [3]. For example,
prior to the establishment of intensive surveillance
activities for smallpox, estimates of reporting rates in
Indonesia and West Africa varied from <1% of cases to
8% in urban areas [Keja (1968) reported in 3, 17]. Under-
reporting is particularly severe for diseases of zoonotic
origin where very few examples of well-integrated

surveillance mechanisms exist [18]. For rabies, largely
complete and well-functioning surveillance and data
management systems are maintained in countries where
canine rabies has either been eliminated (U.S.A. http://
logy and Infectious Diseases 36 (2013) 249– 261

www.cdc.gov/rabies/location/usa/surveillance/index.html;
Europe http://rbe.fli.bund.de (Rabies-Bulletin-Europe)) or
is under control and prospects for elimination are good
(South America http://siepi.panaftosa.org.br/anuais.aspx),
in contrast to deficient surveillance operating in most
endemic countries. Surveillance capacity is also often par-
ticularly weak in areas without a history of rabies. Health
workers play an integral role in the surveillance of strictly
human diseases, and in previously rabies free-areas the
speed of response to outbreaks has sometimes depended
on health workers identifying the disease in humans
(e.g. Bali and Nias in Indonesia, Table 1). Ultimately a
One Health approach involving the close cooperation of
medical and veterinary workers is required for effective
surveillance of rabies and other zoonoses [19].

Limited resources mean that trade-offs inevitably exist
between maintaining sensitive surveillance systems and
mobilizing responses to an incursion once detected by a
less sensitive, passive surveillance system. Recent emer-
gences of rabies highlight the risks posed, including
massive economic repercussions and need for continuous
public health and veterinary staff mobilization, from inad-
vertent introductions if effective surveillance and response
measures are not in place [9,11,20]. In endemic areas
surveillance for canine rabies typically involves passive
reporting of clinically suspected human and/or animal
cases, and ideally laboratory diagnosis of suspect animal
cases particularly if they have caused possible human expo-
sures (although in many areas this is not carried out). While
a lack of proper diagnostic facilities often limits rabies
surveillance, weak field capacity for investigating cases and
poorly functioning reporting networks are perhaps a more
enduring problem [18].

OIE guidelines for a ‘rabies free country’ in Article 8.10.2
of the Terrestrial Animal Health Code require “an effec-
tive system of disease surveillance is in operation” and
“no case of indigenously acquired rabies infection has been
confirmed in man  or any animal species during the past
2 years.” [21]. WHO  guidelines on the levels of surveil-
lance needed to certify rabies-free status indicate that “a
minimum number of samples from suspect cases” should
be tested, and that “for domestic animals, in particular
dogs and cats, the number of samples to be tested should
be between 0.01–0.02% of the estimated population” [8].
However, clarity is still needed on for example, defini-
tions for targeted surveillance, control strategies to rabies
incursions and maintaining rabies-freedom, and quantita-
tive surveillance assessments for decision-making within
rabies elimination programmes.

Although surveillance is an essential component of
control programmes, this is often not well recognized in
developing countries and is exacerbated by poor infra-
structure and health and veterinary capacity. However, it
is precisely these countries where endemic canine rabies
remains, and surveillance is therefore necessary to mon-
itor the impact of any control efforts. In light of these
surveillance issues, and growing advocacy for elimination

of canine rabies, here we aim to understand how successful
rabies control and elimination depends on the effective-
ness of surveillance by investigating different containment
strategies guided by surveillance indicators. Specifically we

http://www.who.int/rabies/bmgf_who_project/en/index.html
http://www.who.int/rabies/bmgf_who_project/en/index.html
http://www.oie.int/en/for-the-media/editorials/detail/article/oies-commitment-to-fight-rabies-worldwide
http://www.oie.int/en/for-the-media/editorials/detail/article/oies-commitment-to-fight-rabies-worldwide
http://www.oie.int/en/for-the-media/editorials/detail/article/oies-commitment-to-fight-rabies-worldwide
http://www.cdc.gov/rabies/location/usa/surveillance/index.html
http://www.cdc.gov/rabies/location/usa/surveillance/index.html
http://rbe.fli.bund.de/
http://siepi.panaftosa.org.br/anuais.aspx
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Table 1
Examples of recent emergence or re-emergence of canine rabies, documenting what is known or estimated about the site and date of incursion, how long it took to implement a response and what type of
intervention was implemented. d = days, w = weeks, m = months, y = years and NA refers to unknown information.

Location of outbreak Epidemiological
history prior to
outbreak

Estimated date
of incursion

Date of
detection (time
between
incursion and
detection)

Suspected
source of
incursion

Site of
incursion

Response and
date (time
between
detection and
response)

Outcome Time between
sampling and
FAT results

Sources

Central Java, Indonesia No detected
cases for at
least 10 y

Aug–Sep 1985 Sep 1985 Dog/s
transported
from
neighbouring
endemic West
Java

Wonogiri
district, South
East of Central
Java

Mass
vaccination,
culling and
movement
control of dogs,
cats and
monkeys began
∼Nov/Dec
1985 (2–3 m)

Outbreak
controlled, but
few cases
reported >1 y
later

NA Waltner-Toews
et al. [24]

Terengganu, East
Malaysia

Rabies
eliminated in
1950s

NA Dec 1995 Dog on fishing
boat

Coastal villages NA NA NA Loke et al. [34]

Flores, East Nusa
Tengarra, Indonesia

Naive group of
islands

Sep 1997 Nov 1997 (2 m) 3 dogs on
fishing boat
from Butung
(Buton) Island,
Sulawesi

Larantuka,
town on
eastern tip

Culling began
early 1998
(<4 m);
vaccination
began 2001
(>3 y)

Endemic >14 d for dogs Bingham [35];
Windiyaningsih
et al. [11];
Scott-Orr et al. [36]

Maluku Islands,
Indonesia

NA NA Aug 2003 Dogs imported
for meat trade
from other
Indonesian
islands;
Sulawesi
(A.A.G. Putra
pers. comm.)

NA NA Endemic NA ProMED-mail [20]

3 neighbouring
districts in Eastern
Bhutan

Rabies
eliminated in
early 1990s

May 2005 May  2005
(<1 m)

Neighbouring
endemic India

Gongza village,
Toetsho sub
district,
Tanshiyangtse
district

Vaccination
began 2005
(<6 m);
impounding
began Mar
2006 (10 m);
no culling as
Bhuddist; no
mass
vaccination

Controlled by
Nov 07

NA Tenzin et al. [27]
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Table 1 (Continued)

Location of outbreak Epidemiological
history prior to
outbreak

Estimated date
of incursion

Date of
detection (time
between
incursion and
detection)

Suspected
source of
incursion

Site of
incursion

Response and
date (time
between
detection and
response)

Outcome Time between
sampling and
FAT results

Sources

Limpopo province,
South Africa

No detected
cases since
1981 but
region endemic

Aug 05 earliest
human case

Feb 06 (>6 m) Southern
Zimbabwe or
Mozambique

Vhembe
district,
bordering
southern
Zimbabwe

Central point
vaccination
intensified in
Feb 06 (<1 m).
Infrastructure
already in
place, ∼40%
coverage in
preceding
years

NA NA Cohen et al. [37]

Bhutan-Chhukha
district

Rabies
eliminated in
early 1990s

Late 2007 Jan 2008
(1–3 m)

Neighbouring
endemic India

Southern
villages of Dala
subdistrict

Culling began
Mar  2008
(6 w);  no mass
vaccination

Controlled by
Jul 2008

NA Tenzin et al. [10]

Bali, Indonesia Naive island Apr 2008 Nov 2008 (7 m) Dog on fishing
boat from
Sulawesi (N.
Dibia, pers.
comm.)

Ungasan
village, Badung
regency,
southern
peninsula

Localised
control began
Dec 08 (1 m);
island-wide
vaccination
began Oct 2010
(2 y)

Continuing
island-wide
vaccination
with
considerable
reduction in
incidence

3 d for dogs
(A.A.G. Putra
pers. comm.)

Knobel and Hiby
[38];
Putra et al. [39];
Susilawathi et al.
[9]

Nias, Indonesia Naive island Medic official
bitten Dec
2009

Medic official
diagnosed with
rabies Mar
2010 (>3 m)

NA NA Emergency dog
vaccination
and culling
began Mar
2010 (<1 m);
intermittent
control
measures to
date but funds
obtained and
capacity being
mobilized;
planned mass
vaccination in
mid  2012
(2.5 y)

Endemic NA http://st284015.
sitekno.com/article/
30848/endemic-
rabies-in-nias-
island.html;
http://www.civas.net/
content/two-people-
died-rabies-nias

Summary Island and
continental
settings
including areas
where
previously
eliminated and
without a
rabies history

Time to
detection
<1–7 m

Human
mediated
transport by
boat, possibly
by vehicle on
land, and
perhaps local
dog movement
in Bhutan

Nearby islands
or from
neighbouring
provinces/
countries

Initial response
<1–6 m; time
to mass
vaccination
<1 m to 3 y (or
still awaiting)

Variable: a few
outbreaks
controlled or
eliminated,
while others
became
endemic

3–14 d (very
limited data)

http://st284015.sitekno.com/article/30848/endemic-rabies-in-nias-island.html
http://st284015.sitekno.com/article/30848/endemic-rabies-in-nias-island.html
http://st284015.sitekno.com/article/30848/endemic-rabies-in-nias-island.html
http://st284015.sitekno.com/article/30848/endemic-rabies-in-nias-island.html
http://st284015.sitekno.com/article/30848/endemic-rabies-in-nias-island.html
http://www.civas.net/content/two-people-died-rabies-nias
http://www.civas.net/content/two-people-died-rabies-nias
http://www.civas.net/content/two-people-died-rabies-nias
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Fig. 1. Probability of detecting a rabies outbreak. Solid lines indicate
0.99 (black) and 0.95 (grey) probabilities of detecting at least one case
(P1). The black dot marks the median estimated probability of detection
(D = 0.07) based on the median outbreak size (Od = 39 cases) estimated
from 10,000 model simulations of 7 months of rabies spread with no con-
S.E. Townsend et al. / Comparative Immunology, 

se the probability of disease detection to measure surveil-
ance quality and ask how this affects the outcome of mass
accination strategies, in terms of the extent of outbreak
pread and time to as well as probability of elimination. We
urther investigate how probability of detection affects the
ertainty of declaring freedom from disease and decision-
aking for the cessation of control activities. We  discuss

ur results in the context of recent emergency responses
o rabies outbreaks, many of which have been on relatively
solated islands. While our results are focused on island
ynamics for simplicity, we expect these insights to be
ransferable to contiguous landscapes once control meas-
res have reduced incidence to relatively localized foci.

. Materials and methods

.1. The epidemiological model

We developed an epidemiological model of rabies trans-
ission and spread which we used to evaluate different
ass vaccination strategies. Our model was based on the

iting and movement behaviour of infectious domestic
ogs and was a spatially explicit, stochastic simulation
sing a simple density-independent branching process (see
able 2 for parameter values and Fig. S1 for parameter dis-
ributions). We  assume that each infectious case causes k
econdary cases (‘offspring’), drawn from a negative bino-
ial distribution, with R0 as its mean, which we assume

o be 1.2 (Fig. S1A). Each secondary case was assigned a
eneration interval selected from a gamma  distribution
epresenting an incubation period plus a period of infection
rior to transmission, to determine when new infections
ere generated (Fig. S1B). Using a 1 km2 grid, we proba-

ilistically allocated the locations of secondary cases. To
apture the local movement of infected dogs, secondary
ases were displaced from their direct epidemiological
redecessors according to a negative binomial-distributed
ispersal kernel with probability 1 − p (Fig. S1C). To cap-
ure human-mediated transport of dogs, exposed offspring
ere assigned to a randomly chosen grid cell with probabil-

ty p. The branching process formulation does not account
or any effects of depletion of the susceptible population as
he incidence of infection increases. However, since rabies
ncidence is not estimated to exceed 3% per annum, deple-
ion of the susceptible population is assumed to play a
egligible role. Further details on the model are available in
he Supplemental Material, which includes videos of model
imulations.

.2. Detection probabilities

We  conducted a literature search on rabies surveil-
ance and outbreak detection and response times to recent
anine rabies incursions (Web of Knowledge and PubMed
or ‘rabies’ AND ‘outbreak’ OR ‘surveillance’ OR ‘incursion’
R ‘response’ OR ‘containment’) and summarized fea-

ures of these outbreaks and control operations (Table 1).

e  used both theory and empirical data to inform the

etection probabilities explored in the model. Bacon [22]
rovides a relationship between outbreak size at the
ime of detection (Od) under different probabilities of
trol, with P1 = 0.95. The dashed box indicates the 95% percentile interval
(D  = 0.02–0.28, Od = 9–176 cases).

detection (D): D = 1 − (1 − P1)(1/Od) where P1 is the proba-
bility of detecting at least one animal with rabies (Fig. 1).
This relationship indicates that when the probability of
detection exceeds 0.3, there are only negligible differences
in outbreak size at the time of detection. Simulating an
incursion following an index case for a period of 7 months
until assumed outbreak detection (as likely occurred on
Bali, Table 1) provides an estimate of probability of detec-
tion of around 0.07 (95% CI 0.02–0.28, Fig. 1). Based on these
data, we  considered detection probabilities in the range
0.01–0.30.

2.3. Model scenarios

We  modelled surveillance as a probabilistic process
sampling simulated rabies cases, with detected (i.e. sam-
pled) cases used to trigger responses and determine
decisions for subsequent interventions including the decla-
ration of freedom from disease and the cessation of control
activities (Fig. 2 illustrates an example of these time points).
Specifically, we  set up scenarios to explore the impact
of the probability of detecting rabies cases during three
phases: (1) from incursion to detection and mobilisation of
a response, i.e. mass dog vaccination; (2) from the start of
mass vaccination until control of the disease; and (3) from
control to elimination. The three phases are highlighted in
Fig. 2 with reference to the figures in which correspond-
ing results are presented. Aspects of these phases were

guided by data on recent rabies outbreaks where possi-
ble (Table 1, summarised in the bottom row). ‘Reference
scenario’ refers to default model parameters and initializa-
tion. We  initiated epidemics under a variety of scenarios



254 S.E. Townsend et al. / Comparative Immunology, Microbiology and Infectious Diseases 36 (2013) 249– 261

Table 2
Model scenarios and parameters values for rabies transmission processes, characteristics of the environment and dog population, surveillance and response.
Reference scenario parameters and model set up are in bold.

Parameter Value Source/Rationale

Transmission Shape and scale of gamma  distribution
modelling generation interval

Shape 1.46 days; scale 16.1 days Hampson et al. [23]

Mean and dispersion parameter of
negative binomial distribution
modelling R0

Mean 1.20; k 1.33 Hampson et al. [23]; Townsend et al.
[31]

Environment and
population

Area 500, 5000, 15,000 km2 Ambon Maluku, Indonesia
∼775 km2; Bali, Indonesia
∼5600 km2; Bohol, Philippines
∼4100 km2; Nias, Indonesia
∼5100 km2; 3 districts in Eastern
Bhutan ∼7000km2; Flores, Indonesia
∼14,300 km2

Geometry Circular, interdigitated To compare a minimum edge effect
versus a large edge effect

Human-mediated long distance dog
movement

0, 2, 5% Estimated for Bali, Indonesia [31]

Local movement spatial kernel: mean
and dispersion parameter (k) of
negative binomial distribution

Mean 0.88 km2; k 0.285 Hampson et al. [23]

Annual dog population turnover 50% We  assume that 50% of dogs
vaccinated die one year later, and
that the birth and death rates are
equivalent

Detection and response Probability of detection 0.01–0.3, 0.1 See methods: Detection probabilities
Response mobilization time 1, 6, 12 months Table 1
Lag between detected case and
laboratory confirmation

0, 14 days Table 1

Time period of cases used to determine
reactive vaccination

1, 6 months

Duration of immunity provided by
vaccine

2 years Most commercial vaccines provide
1–3 years of protection

Vaccination coverage achieved at time
and place of vaccination (V)

V = 70%, V∼uniform (35%, 70%), V
for 80% of island ∼uniform(35%,
70%) and V for 20% of island
∼uniform(X/2,X) where
X∼uniform(0,70%)

70% target vaccination coverage is
recommended by WHO  and
empirically and theoretically
supported [40]. Due to the difficulty
of  estimating coverage and dog
population sizes, coverage achieved
is expected to be spatially variable
and may  often fall below the 70%
target.

Vaccination strategy Proactive,  prioritise, react w/o
repeat, reactive (see Table S1)

Builds on strategies explored in
Townsend et al. [31]

Cumulative number of cases when
start vaccination

500, 5000 5000 is the approx. cumulative
number of cases on Bali when mass
vaccination started, assuming 10% of
cases were confirmed

Length of monitoring period 2 years OIE and WHO  criteria for rabies-free
status requires 2 years without
indigenously acquired infection
[8,21]

Months without any detected cases
before starting 2-year monitoring

2, 6 months

No vac
vaccina
period
Intervention during monitoring period 

characteristic of different populations (with differing island
sizes and levels of human-mediated long distance transport
of dogs) and environments (variable island shape that may
hinder or facilitate disease spread) (detailed in Table 2). For
each scenario explored, we ran 100 realizations in MATLAB

(version 7 release 14, The MathWorks Inc.). An illustrated
example of a model simulation of the reference scenario is
shown in Fig. 2, and videos of simulations are available as
Supplementary Data (Videos S1–S3).
cination, proactive
tion

For the first phase, incursion to mobilisation of a
response, epidemics were seeded with a single ran-
domly placed index case. The response time consisted
of two periods: the time between incursion and out-
break detection, and a surveillance-independent period

between detection and mobilisation of a response (0, 6 or
12 months).

For the control phase, we  investigated which mass
vaccination strategy was  most effective under different
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Fig. 2. Simulation scenario indicating the critical time points from an incursion to the declaration of freedom from rabies. An example simulation illustrated
as  a time series and as the spatial occurrence of cases on an island grid (circular, 500 km2). During an outbreak, incidence (black solid line/dots indicates
cell  is infected) generally increases exponentially from the time of the incursion (cross marks incursion location). The delay to detection and therefore
the  number of detected cases (black dashed line/white dot indicates cell contains detected cases) varies according to the probability of detecting cases.
Following outbreak detection, there may  be a delay to implementation of a control strategy. Vaccination coverage (grey line/darker shading of cells indicates
higher coverage) increases during campaigns and decays between campaigns due to waning of immunity and dog population turnover. This population
would be considered rabies-free after a period of 2 years monitoring without any detected cases. Some undetected cases occur after the last detected case,
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ut  in this simulation the epidemic was extinct when freedom from rabie
esults from thousands of simulations, presented in Figs. 3–5.

nitial conditions and levels of detection probability. To ini-
ialize conditions for this phase, we ran the model until

 set number of infections had occurred (5000 for the
eference scenario, Video S1 shows an example simula-
ion). We  then implemented vaccination (see Videos S2
nd S3 for example simulations) and explored the effec-
iveness of responses in terms of: (a) the time to bring the
utbreak under control, measured as the length of time for
hich the intervention needed to be maintained until 6

onsecutive months passed with no detected cases; (b) the
ffort required to achieve control; and (c) the probability of
limination within 2 years of control following the suspen-
ion of vaccination campaigns.

Dog vaccination was represented in the model by reduc-
ng the number of secondary cases per primary infection
n direct proportion to vaccination coverage at the time of
ransmission. The effects of rabies incidence on the pro-
ortion of dogs vaccinated were not incorporated as they

ere assumed to be negligible. We  assigned vaccination

overage to each island grid cell (1 km2) which, during a
ampaign, was drawn from a uniform distribution between
5 and 70% to capture realistic variation in coverage
clared. The model that generated this realization was  used to generalise

achieved at the time of vaccination. We  modelled waning of
vaccination coverage according to dog demographic rates
and the duration of vaccine-induced immunity (Table 2).
Campaigns were implemented in the model over a 4-
month period, once a year, with the total land mass divided
into 32 blocks representing administrative areas. There-
fore, each month, a coverage level was  designated to
grid cells from up to 8 blocks selected according to the
response strategy. Responses (Table S1) were island-wide,
whereby the whole island was  vaccinated (‘proactive’, see
Video S2 for a model simulation), or selectively conducted
in blocks with detected infections. Within the cate-
gory of reactive responses we included a strategy where
blocks were not re-vaccinated during the same campaign
(‘react-without-repeat’, see Video S3 for a model simu-
lation). We  also explored a proactive strategy whereby
blocks were vaccinated in an order that prioritizes those
with the most detected cases. We  measured the relative

effort required to implement each strategy by summing the
number of blocks vaccinated to bring the outbreak under
control, a measure that combines the number and extent
of annual campaigns that resulted in control.
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Fig. 3. Outbreak size and extent under different detection probabilities. (A) Median interval between the index case and detection of the outbreak (dotted
line).  Shaded areas represent 95% CIs for all panels. (B) Outbreak size when a response is implemented: the reference scenario of 6 months to mobilization
(‘6  mth’), as well as an ‘immediate’ and a slower response (‘1 yr’). (C–E) The extent of outbreaks (% blocks infected) at the time of detection under different

vement
ircular is
the best
detection probabilities and (C) long-distance (human-mediated) dog mo
5000 km2, small 500 km2); and (E) shapes: interdigitated islands (+) and c
scenarios generate very different case distributions, potentially affecting 

We  considered the comprehensiveness of vaccination
coverage on the prospects for elimination. Coverage was
improved by achieving uniformly high (70%) coverage in
every 1 km2 grid cell (‘hom’, in the reference scenario vacci-
nation coverage is heterogeneous ‘het.’). We  also modelled
poorer coverage mimicking issues such as incomplete
island-wide vaccination, coordination problems or inacces-
sible populations (‘patchy coverage’): for ∼20% of blocks
(6 randomly chosen blocks), for each block we assigned
vaccination coverage to each grid cell from a uniform dis-
tribution where the upper limit was a random number
between 0 and 70% (e.g. 52%) and the lower limit was half
the value (e.g. 26%). In further scenarios we investigated
parameters that might affect the performance of reactive
strategies, including a 14-day lag in the confirmation of
cases, reactions based on several months of cases, and clus-

tered epidemics.

For the elimination phase, we explored decisions nec-
essary to determine freedom from disease given realistic
probabilities of detection. Current guidelines state that
: 0%, 2% (reference) and 5%; (D) island sizes (large 15,000 km2, reference
lands (reference, ·). Table 2 gives the model set up and parameters. These

 vaccination strategy, which is considered in Fig. 4, Figs. S2 and S3.

rabies-free status is assigned following 2 years without
cases, but do not indicate whether vaccination should con-
tinue during this monitoring period. We  therefore explored
the probability of elimination in the 2 years following a
2 or 6-month period without any detected cases, where-
upon vaccination activities were halted, or continued for
the 2-year duration. For simulations where rabies per-
sisted because cases were not detected causing control to
be stopped prematurely, we estimated the length of the
monitoring period needed to ensure the detection of re-
emergence.

3. Results

The percentage of dog rabies cases detected in Bali was
estimated at around 7% (95% CI: 2–28%, Fig. 1), and there-

fore we considered detection probabilities in the model
across the range 0.01–0.30. The probability of detection
affects the delay until an incursion is detected and there-
fore the epidemic situation can be markedly worse by
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f  elimination during the 2-year monitoring period after suspension of 

accination strategy descriptions.

he time that control efforts are initiated, with increasing
utbreak size and extent at lower detection probabilities
Fig. 3A, B). For example, when the probability of detection
s just 0.01, it could take 18 months for an outbreak to be
etected (Fig. 3A) and, given a 6-month lag to initiate a
esponse, almost 2000 dogs could become infected in the 2
ears prior to implementation of control measures (Fig. 3B).
utbreak extent is further exacerbated in settings with
ore human-mediated long distance transport of dogs, on

elatively smaller islands and, to a lesser degree, in areas
ith less complex coastlines/edges (Fig. 3C–E).

The probability of detection also affected the effective-
ess of different mass vaccination strategies. Implementing
he reference scenario model (Table 2) with proactive vac-
ination, the time to bring an epidemic under control
where successful) was consistently low (2.5 years, 95%CI:
.5–3.5 years) across the range of detection probabilities
Fig. 4A) and lower with fewer starting cases (Fig. S2A).
owever, the response strategies that were dependent
n the probability of detection showed greater variation
n controlling rabies. The strategy which was proactive
ut prioritised the order of vaccination by the number of
etected cases did reduce the time to control on average,
ut could increase the time to control when surveillance
as poor (Fig. S2B). The react-without-repeat strategy was
otentially as effective as proactive vaccination at bringing
he epidemic under control, but often took considerably
onger, especially at low detection probabilities (Fig. 4A)

hich negated any advantage of reduced effort of a reactive
ver a proactive strategy (Fig. 4B).

Once disease was brought under control following a 6-
onth period without any detected cases, the probability

f achieving elimination in the 2-year monitoring period

ith mass vaccination suspended was high for all strategies

t detection probabilities above ∼0.10 (Fig. 4C). However,
t detection probabilities below 0.10 the probability of
limination was  much lower for reactive vaccination than
 efforts. See Table 2 for model set up and parameters, and Table S1 for

proactive vaccination, and declined to zero when detection
probability was 0.01 (Fig. 4C). Under all the conditions that
we explored (Fig. S3), the probability of elimination within
the 2-year monitoring period was  lower for reactive than
for proactive vaccination.

Assuming comprehensive high coverage (in contrast to
the heterogeneous coverage implemented under the refer-
ence scenario, ‘het.’ Fig. S2C), resulted in a greater chance
of elimination (>95%) at almost all detection probabili-
ties, only declining below 95% for very poor surveillance
(0.01) as vaccination was suspended prematurely due to
the substantial under-reporting (‘hom.’, Fig. S2C). Patches
of low coverage profoundly damaged prospects of elim-
ination for all probabilities of detection by creating
pockets where rabies could persist (‘patchy coverage’,
Fig. S2C).

Finally, we explored decisions necessary to determine
freedom from disease. With the condition of no detected
cases for a 6-month period being used to suspend mass
vaccination, we  found that the probability of elimination
during the following 2-year period was very high (>0.99)
for detection probabilities of at least 0.1 (Fig. 5A). How-
ever for lower detection probabilities the probability of
achieving elimination rapidly declined, and became unac-
ceptable (<0.95) at detection probabilities of less than 0.05
(Fig. 5A). Using a less stringent condition of 2 months with
no detected cases to suspend control operations resulted
in far lower probabilities of achieving elimination such
that even with high levels of surveillance the probability
of elimination was  unacceptable (<0.95) (Fig. 5A). If vacci-
nation campaigns were maintained throughout the 2-year
monitoring period the probability of elimination was  >0.95
for all detection probabilities (Fig. 5A). However, if vac-

cination efforts were suspended after 6 months with no
cases, any re-emergences would still be detected within
1.75 years (21 months) of stopping vaccination under even
the very poorest detection probabilities (Fig. 5B).
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4. Discussion

Recent emergences of rabies and increasing momentum
for rabies elimination programmes highlight the need for
technical guidance and contingency planning to prevent
outbreaks, respond to incursions should they occur and
strategically implement control measures to meet elim-
ination targets. Effective surveillance is integral to these
objectives, however we have only a limited quantitative
understanding of how surveillance quality might jeopar-
dize these goals. The low incidence of rabies (<2.5% in
Tanzania [23], and lower attack rates reported from else-
where [10,11,24–27]) hinders the use of random sampling
as a surveillance strategy for rabies. The large numbers
of samples that would be needed to confirm a single
rabies case would be both ethically unacceptable and logis-
tically implausible. Applying WHO  guidelines to sample
0.01–0.02% of the dog population would not generate suffi-
cient positive samples to ensure surveillance quality even
from highly endemic areas if sampling was not targeted,
and could not be relied upon to certify freedom from dis-
ease. In contrast, the distinctive signs of rabies in animals
are a sensitive means of identifying suspect rabies cases.
Therefore targeted surveillance of high-risk animals (i.e.
that are biting, behaving strangely, morbid or found dead)
should be used to enhance disease detection and can be
used to monitor surveillance capacity even when rabies
has potentially been eliminated. We  use this context of
targeted sampling to investigate how the proportion of
rabies cases that are detected (i.e. surveillance quality)

affects rabies control measures, including responses to an
outbreak and ultimately the elimination of disease.

Very little empirical data exists that can be used to
assess rabies surveillance quality around the world. Here,
 A) and the detection of any re-emergence. Only probabilities of detection
solid line in A). This plot is based on 100 runs where rabies re-emerged,
ged within a given time period and at a given probability of detection.

we estimated that less than 10% of cases were confirmed
in the recent outbreak in Bali. During an epidemic in
Serengeti district (∼80,000 km2), Northern Tanzania where
annual rabies incidence peaked at 2.5% [23], but was on
average between ∼1–2% when control measures were in
place, it was  only possible to retrieve samples for labora-
tory confirmation from ∼5–10% of identified cases using
exhaustive contact tracing. This was because the suspect
animal could not be found or had already deteriorated
once it had been found. Extrapolating similar levels of
incidence to the Bali dog population (∼430,000 dogs), sug-
gests that between 5,000–10,000 cases occurred during
the epidemic peak in 2009–2010. Around 450 cases were
confirmed over this 12-month period indicating a similar
case detection probability of 0.045–0.09. These data sug-
gest that generally detection probabilities for canine rabies
are low (<0.1), and are consistent with, if not lower than,
surveillance levels in Europe for wildlife rabies during
highly successful oral vaccination programmes [22]. While
surveillance infrastructure in Bali is considerably better
than in Tanzania, government surveillance is less intensive
than contact tracing. We  therefore might expect consid-
erably lower levels of surveillance (detection probability
of <0.1) in areas with poorer infrastructure and without
research capacity and this may  be further compounded
in malaria endemic areas by misdiagnosis [28]. Of those
incursions described in Table 1, most were only detected
after several months and rabies may  have been circulat-
ing undetected for much longer, especially in areas with
poorer surveillance infrastructure. Even with improved

infrastructure, detection probabilities relying on labora-
tory confirmation and exceeding 0.3 would be difficult to
achieve in most populations without considerably intensi-
fied effort.
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Our key finding is that control programmes ought to
e able to maintain surveillance levels that detect at least
% of all cases to have realistic prospects of eliminating
abies, and that surveillance with detection probabilities of
ore than 0.1 would be ideal. Given that routine surveil-

ance in much of sub-Saharan Africa probably detects far
ess that 5% of cases, increasing surveillance capacity must
e considered an urgent priority. Field tests that could
e easily applied could greatly increase the probability of
etection in places with the weakest surveillance infra-
tructure. Indeed rapid field-testing became an important
ool in the campaigns that successfully eradicated rinder-
est [29]. Currently available rapid diagnostic field tests
or rabies have a lower sensitivity relative to the gold
tandard FAT [30] and should not be used to guide the
se of post-exposure prophylaxis. However greater use of
hese tests and the development of more reliable tests
ould be used to boost the probability of detection to
he levels necessary to guide elimination efforts. Another
ffective means of improving detection probabilities would
e through greater intersectoral communication. If health
fficers promptly notify veterinarians/animal health work-
rs when bite patients report to a clinic, and the latter
apidly investigate these incidents, then a far higher pro-
ortion of cases would likely be detected. Recent efforts

n Bali to improve coordination between sectors appear to
ave had such an impact, and evidence from contact trac-

ng studies indicates that the vast majority of case histories
an be traced by investigating incidents of biting animals.

In terms of vaccination strategies that are most effec-
ive, previous work showed that reactive vaccination can
utperform proactive vaccination, eliminating rabies more
apidly particularly in areas with little human-mediated
ransport of dogs [31]. However, this appears only to hold
rue under very high levels of surveillance (probability of
etection >0.3) because all affected areas are reactively
accinated, whereas if surveillance is poor many areas sup-
orting rabies transmission may  be neglected if rabies is
ot detected. Assuming imperfect surveillance where only

 small fraction of cases are observed is much more realis-
ic and suggests that protecting populations where rabies
as yet to be detected but are vulnerable is an important
lement in an effective strategy. Indeed reactive vaccina-
ion for rabies which is currently the norm in endemic
ountries that lack (or do not implement) national rabies
ontrol strategies [32] or have operational surveillance sys-
ems, would be very unlikely to have long-term impacts
n reducing rabies incidence and would certainly not lead
o elimination. On the basis of our findings we would not
ecommend reactive vaccination at all unless sufficiently
igh levels of surveillance are first deployed that effectively
how the disease has been reduced to low levels in a few
emaining foci. If such high levels of surveillance can be
eached, then reactive vaccination (without repeats) may
e worth considering because of its considerably reduced
ost (Fig. 4B) and therefore may  warrant further consid-
ration in the context of the final stages of elimination

rogrammes.

Vaccination campaigns are usually not conducted with
qual efficacy across the target population. We  therefore
ncorporated scenarios with more realistic heterogeneity
logy and Infectious Diseases 36 (2013) 249– 261 259

in coverage. A reasonable level of heterogeneity (as mod-
elled in the reference scenario) reduced the effectiveness
of vaccination and had implications for surveillance, with
poorer surveillance greatly reducing prospects of elim-
ination. Of greater concern however, is the substantial
impact of patchy coverage. Relatively comprehensive con-
trol programmes can be jeopardized if control operations
are substantially weaker in just a small proportion of the
overall area (Fig. S2C). Thus at the same time as boost-
ing surveillance, a minimum control capacity ought to be
required throughout an area under consideration for elim-
ination.

The potentially long incubation period of rabies in dogs
[33] makes ascertaining whether rabies has truly been
eliminated relatively difficult, despite long periods of no
detected cases. We modelled the incubation period and the
infection period together as a gamma distribution, i.e. the
general interval (the time between infection and becom-
ing infectious) parameterised from data on rabid dogs in
Tanzania [23]. From this distribution, in 95% of cases, the
generation interval will be less than 2 months and in a fur-
ther 4% of cases will be 2–3 months. The probability of a
generation interval longer than 6 months is 0.01, and longer
than 1 year is very small but not impossible (10−9). This
long tail of the generation interval distribution is reflected
in the confidence measures of disease elimination (Fig. 5B).
For example, given a detection probability of 0.01 there
is a 50% chance that, if rabies still persists, re-emergence
will occur within 5 months of bringing rabies under con-
trol (defined here as 6 months with no detected cases),
whereas to be certain that re-emergence will not occur
requires monitoring for 1.75 years after successful control
(Fig. 5B). How the generation interval is modelled, in par-
ticular whether an appropriately stochastic model is used,
will influence estimates of the monitoring period needed
to guarantee elimination and recommendations must take
this uncertainty into account. Based on these analyses, 2
years 3 months without detecting any cases would be a
sufficient criterion for rabies-freedom, even in areas with
the poorest surveillance.

For programmes that aim for rabies elimination, the cur-
rent 2-year guideline seems effective if control measures
are maintained. If however control measures are discon-
tinued, surveillance must ensure that at least 10% of cases
are detected otherwise there is an unacceptable risk rabies
will not go extinct (>0.05) within the 2-year monitoring
period (Fig. 5). The potential to continue control efforts dur-
ing the monitoring period to certify freedom from rabies
contrasts to diseases such as foot-and-mouth disease and
rinderpest. For these diseases, control activities need to be
halted to ascertain disease-freedom using serosurveillance,
whereas for rabies there would be no such opportunity
costs of maintaining control measures.

Our findings from this modelling study have important
practical implications that may  be useful to guide poli-
cies for rabies containment and elimination. Overall we
recommend minimum requirements for surveillance

capacity including detection of at least 5% and prefer-
ably 10% of all cases. For programmes aiming for disease
elimination, we would recommend a proactive strategy of
mass vaccination continued for a 2-year period following
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6 consecutive months without any detected cases. Mass
vaccinations should ideally achieve uniformly high cover-
age, but the most important consideration is to ensure that
no areas are left unvaccinated as patchy coverage could
enable disease to persist in unvaccinated pockets. Should
decisions be taken to prematurely discontinue control
activities during the 2-year monitoring period, sufficient
surveillance mechanisms must be in place to prevent
potentially disastrous consequences. Further investigation
on how to maintain freedom from disease in contiguous
landscapes where neighbouring areas may  act as a con-
stant source of re-infection will be investigated more fully
in future. However with an effective surveillance system
operating, where medical and veterinary workers ally to
achieve One Health, 2 years of continuous monitoring and
vaccination should be sufficient to guarantee elimination
of a controlled outbreak from an isolated area not subject
to repeat introductions.
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